مقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يمكنالتعبيرعنهابالصيغةالعامة:z=a+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1شرحدرسالأعدادالمركبة
خصائصالأعدادالمركبة
الجمعوالطرح:عندجمعأوطرحعددينمركبين،نجمع/نطرحالأجزاءالحقيقيةوالأجزاءالتخيليةبشكلمنفصل.مثال:(3+2i)+(1-4i)=(3+1)+(2-4)i=4-2i
شرحدرسالأعدادالمركبةالضرب:نضربالأعدادالمركبةباستخدامخاصيةالتوزيعمعتذكرأنi²=-1.مثال:(2+3i)(1-2i)=2(1)+2(-2i)+3i(1)+3i(-2i)=2-4i+3i-6i²=2-i+6=8-i
شرحدرسالأعدادالمركبةالقسمة:لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام.
شرحدرسالأعدادالمركبة
التمثيلالهندسي
يمكنتمثيلالعددالمركبz=a+biكنقطةفيالمستوىالمركب(مستوىأرجاند)حيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي
شرحدرسالأعدادالمركبةالصيغةالقطبية
يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:z=r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)ويحسببالعلاقةr=√(a²+b²)-θهيالزاوية(الوسع)وتحسببالعلاقةθ=arctan(b/a)
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
- فيمعالجةالإشاراتالرقمية
- فيميكانيكاالكم
- فيتحليلالدوالالرياضيةالمعقدة
خاتمة
الأعدادالمركبةتوسعمفهومنظامالأعدادالحقيقيةوتقدمأدواتقويةلحلمعادلاتلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.فهمالأعدادالمركبةأساسيفيالعديدمنفروعالرياضياتوالعلومالتطبيقية.
شرحدرسالأعدادالمركبة